41 resultados para peroxidase

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND:
Acid-sensing ion channels (ASIC) are a family of acid-activated ligand-gated cation channels. As tissue acidosis is a feature of inflammatory conditions, such as allergic rhinitis (AR), we investigated the expression and function of these channels in AR.
OBJECTIVES:
The aim of the study was to assess expression and function of ASIC channels in the nasal mucosa of control and AR subjects.
METHODS:
Immunohistochemical localization of ASIC receptors and functional responses to lactic acid application were investigated. In vitro studies on cultured epithelial cells were performed to assess underlying mechanisms of ASIC function.
RESULTS:
Lactic acid at pH 7.03 induced a significant rise in nasal fluid secretion that was inhibited by pre-treatment with the ASIC inhibitor amiloride in AR subjects (n = 19). Quantitative PCR on cDNA isolated from nasal biopsies from control and AR subjects demonstrated that ASIC-1 was equally expressed in both populations, but ASIC-3 was significantly more highly expressed in AR (P < 0.02). Immunohistochemistry confirmed significantly higher ASIC-3 protein expression on nasal epithelial cells in AR patients than controls (P < 0.01). Immunoreactivity for EPO+ eosinophils in both nasal epithelium and submucosa was more prominent in AR compared with controls. A mechanism of induction of ASIC-3 expression relevant to AR was suggested by the finding that eosinophil peroxidase (EPO), acting via ERK1/2, induced the expression of ASIC-3 in epithelial cells. Furthermore, using a quantitative functional measure of epithelial cell secretory function in vitro, EPO increased the air-surface liquid depth via an ASIC-dependent chloride secretory pathway.
CONCLUSIONS:
This data suggests a possible mechanism for the observed association of eosinophils and rhinorrhoea in AR and is manifested through enhanced ASIC-3 expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The opportunistic bacterium Burkholderia cenocepacia C5424 contains two catalase/peroxidase genes, katA and katB. To investigate the functions of these genes, katA and katB mutants were generated by targeted integration of suicide plasmids into the katA and katB genes. The catalase/peroxidase activity of the katA mutant was not affected as compared with that of the parental strain, while no catalase/peroxidase activity was detected in the katB mutant. However, the katA mutant displayed reduced resistance to hydrogen peroxide under iron limitation, while the katB mutant showed hypersensitivity to hydrogen peroxide, and reduced growth under all conditions tested. The katA mutant displayed reduced growth only in the presence of carbon sources that are metabolized through the tricarboxylic acid (TCA) cycle, as the growth defect was abrogated in cultures supplemented with glucose or glycerol. This phenotype was also correlated with a marked reduction in aconitase activity. In contrast, aconitase activity was not reduced in the katB mutant and parental strains. The authors conclude that the KatA protein is a specialized catalase/peroxidase that has a novel function by contributing to maintain the normal activity of the TCA cycle, while KatB is a classical catalase/peroxidase that plays a global role in cellular protection against oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiovascular disease is the major cause of morbidity and mortality in patients with end-stage renal failure. Increased free radical production and antioxidant depletion may contribute to the greatly increased risk of atherosclerosis in these patients. Glutathione peroxidase (GPX) is an important antioxidant, the plasma form of which is synthesized mainly in the kidney (eGPX). The aim of this study was to assess the activity of eGPX in patients with end-stage renal failure on haemodialysis. Venous blood was collected from 87 haemodialysis patients immediately prior to and after dialysis and from 70 healthy controls. Serum eGPX activity was measured using hydrogen peroxide as substrate and immunoreactivity determined by ELISA. eGPX activity was significantly reduced in dialysis patients when compared to controls (106 +/- 2.7 and 281 +/- 3.6 U/l respectively, p <0.001). Following haemodialysis, eGPX activity rose significantly to 146 +/- 3.8 U/l, p <0.001, although remaining below control values (p <0.005). Immunoreactive eGPX, however, was similar in all groups (pre-dialysis 14.10 +/- 1.26 microg/ml, post-dialysis 14.58 +/- 1.35 microg/ml, controls 15.20 +/- 1.62 microg/ml, p = NS). A decrease was observed in the specific activity of eGPX in patients when compared to controls (8.81 +/- 1.14, 10.71 +/- 1.54 and 21.97 +/- 1.68 U/mg respectively, p <0.0001). eGPX activity is impaired in patients undergoing haemodialysis and so may contribute to atherogenesis in renal failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective Oxidative stress is implicated in the pathogenesis of many human diseases including atherosclerosis. Human glutathione peroxidase 1 (hgpx1) participates in limiting cellular damage caused by oxidation. A characteristic polyalanine sequence polymorphism in exon 1 of hgpx1 produces three alleles with five, six or seven alanine (ALA) repeats in this sequence. The objective of this study was to determine whether hgpx1 genotype is associated with an altered risk of coronary artery disease (CAD).

Methods The frequency of the ALA6 allele was determined in 207 men with angiographic evidence of significant CAD compared to a control group (n = 146), by analysing the lengths of polymerase chain reaction fragments containing the ALA repeat polymorphism. Additional information was collected on severity of CAD, presence or absence of a prior acute myocardial infarction (AMI), smoking status, body mass index (BMI) and other clinical data.

Results There was a significant association between individuals with at least one ALA6 allele and an increased risk of CAD after adjustment for age, BMI and smoking status (odds ratio, 2.07, 95% confidence interval, 1.08-3.99, P = 0.029). However, there was no association between hgpx1 genotype and a previous history of AMI or hgpx1 genotype and severity of CAD.

Conclusion We conclude that individuals possessing one or two ALA6 alleles appear to be at a modest increased risk of CAD. This observation merits further investigation in other patient populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mural cells (smooth muscle cells and pericytes) regulate blood flow and contribute to vessel stability. We examined whether mural cell changes accompany age-related alterations in the microvasculature of the central nervous system. The retinas of young adult and aged Wistar rats were subjected to immunohistofluorescence analysis of a-smooth muscle actin (SMA), caldesmon, calponin, desmin, and NG2 to identify mural cells. The vasculature was visualized by lectin histochemistry or perfusion of horse-radish peroxidase, and vessel walls were examined by electron microscopy. The early stage of aging was characterized by changes in peripheral retinal capillaries, including vessel broadening, thickening of the basement membrane, an altered length and orientation of desmin filaments in pericytes, a more widespread SMA distribution and changes in a subset of pre-arteriolar sphincters. In the later stages of aging, loss of capillary patency, aneurysms, distorted vessels, and foci of angiogenesis were apparent, especially in the peripheral deep vascular plexus. The capillary changes are consistent with impaired vascular autoregulation and may result in reduced pericyte-endothelial cell contact, destabilizing the capillaries and rendering them susceptible to angiogenic stimuli and endothelial cell loss as well as impairing the exchange of metabolites required for optimal neuronal function. This metabolic uncoupling leads to reactivation of

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: This study investigated whether differences exist in atherogen-induced migratory behaviors and basal antioxidant enzyme capacity of vascular smooth muscle cells (VSMC) from human coronary (CA) and internal mammary (IMA) arteries. Methods: Migration experiments were performed using the Dunn chemotaxis chamber. The prooxidant [NAD(P)H oxidase] and antioxidant [NOS, superoxide dismutase, catalase and glutathione peroxidase] enzyme activities were determined by specific assays. Results: Chemotaxis experiments revealed that while both sets of VSMC migrated towards platelet-derived growth factor-BB (1-50 ng/ml) and angiotensin II (1-50 nM), neither oxidized-LDL (ox-LDL, 25-100 ng/ml) nor native LDL (100 ng/ml) affected chemotaxis in IMA VSMC. However, high dose ox-LDL produced significant chemotaxis in CAVSMC that was inhibited by pravastatin (100 nM), mevastatin (10 nM), losartan (10 nM), enalapril (1 micro.M), and MnTBAP (a free radical scavenger, 50 micro.M). Microinjection experiments with isoprenoids i.e. geranylgeranylpyrophosphate (GGPP) and farnesylpyrophosphate (FPP) showed distinct involvement of small GTPases in atherogeninduced VSMC migration. Significant increases in antioxidant enzyme activities and nitrite production along with marked decreases in NAD(P)H oxidase activity and superoxide levels were determined in IMA versus CA VSMC. Conclusions: Enhanced intrinsic antioxidant capacity may confer on IMAVSMC resistance to migration against atherogenic agents. Drugs that regulate ox-LDL or angiotensin II levels also exert antimigratory effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Chronic inhibition of nitric oxide (NO) synthesis is associated with hypertension, myocardial oxidative stress and hypertrophic remodeling. Up-regulation of the cardiomyocyte adrenomedullin (AM) / intermedin (IMD) receptor signaling cascade is also apparent in NO-deficient cardiomyocytes: augmented expression of AM and receptor activity modifying proteins RAMP2 and RAMP3 is prevented by blood pressure normalization while that of RAMP1 and intermedin (IMD) is not, indicating that the latter is regulated by a pressure-independent mechanism. Aims: to verify the ability of an anti-oxidant intervention to normalize cardiomyocyte oxidant status and to investigate the influence of such an intervention on expression of AM, IMD and their receptor components in NO-deficient cardiomyocytes. Methods: NO synthesis inhibitor, NG-nitro-L-arginine methyl ester (L-NAME, 35mg/kg/day) was given to rats for 8 weeks, with/without con-current administration of antioxidants (Vitamin C (25mg/kg/day) and Tempol (25mg/kg/day)). Results: In left ventricular cardiomyocytes isolated from L-NAME treated rats, increased oxidative stress was indicated by augmented (3.6 fold) membrane protein oxidation, enhanced expression of catalytic and regulatory subunits of pro-oxidant NADPH oxidases (NOX1, NOX2) and compensatory increases in expression of anti-oxidant glutathione peroxidase and Cu/Zn superoxide dismutases (SOD1, SOD3). Vitamin C plus Tempol did not reduce systolic blood pressure but normalized augmented plasma levels of IMD, but not of AM, and in cardiomyocytes: (i) abolished increased membrane protein oxidation; (ii) normalized augmented expression of prepro-IMD and RAMP1, but not prepro-AM, RAMP2 and RAMP3; (iii) attenuated (by 42%) increased width and normalized expression of hypertrophic markers, skeletal-�-actin and prepro-endothelin-1 similarly to blood pressure normalization but in contrast to blood pressure normalization did not attenuate augmented brain natriuretic peptide (BNP) expression. Conclusion: normalization specifically of augmented IMD/RAMP1 expression in NO-deficient cardiomyocytes by antioxidant intervention in the absence of blood pressure reduction indicates that these genes are likely to be induced directly by myocardial oxidative stress. Although oxidative stress contributed to cardiomyocyte hypertrophy, induction of IMD and RAMP1 is unlikely to be secondary to cardiomyocyte hypertrophy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complex I (NADH: ubiquinone oxidoreductase) is generally regarded as one of the major sources of mitochondrial reactive oxygen species (ROS). Mitochondrial membranes from the obligate aerobic yeast Yarrowia lipolytica, as well as the purified and reconstituted enzyme, can be used to measure complex I-dependent generation of superoxide (O-2(center dot-)). The use of isolated complex I excludes interference with other respiratory chain complexes and matrix enzymes during superoxide dismutase-sensitive reduction of acetylated cytochrome c. Alternately. hydrogen peroxide formation can be measured by the Amplex Red/horseradish peroxidase assay. Both methods allow the determination of complex I-generated ROS, depending on substrates (NADH, artificial ubiquinones), membrane potential, and active/deactive transition. ROS production by Yorrowia complex I in the

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chloramphenicol is a broad-spectrum antibiotic shown to have specific activity against a wide variety of organisms that are causative agents of several disease conditions in domestic animals. Chloramphenicol has been banned for use in food-producing animals for its serious adverse toxic effects in humans. Due to the harmful effects of chloramphenicol residues livestock products should be free of any traces of these residues. Several analytical methods are available for chloramphenicol analysis but sensitive methods are required in order to ensure that no traces of chloramphenicol residues are present in edible animal products. In order to prevent the illegal use of chloramphenicol, regulatory control of its residues in food of animal origin is essential. A competitive enzyme-linked immunosorbent assay for chloramphenicol has been locally developed and optimized for the detection of chloramphenicol in sheep serum. In the assay, chloramphenicol in the test samples and that in chloramphenicol-horseradish peroxidase conjugate compete for antibodies raised against the drug in camels and immobilized on a microtitre plate. Tetramethylbenzidine-hydrogen peroxide (TMB/H2O2) is used as chromogen-substrate system. The assay has a detection limit of 0.1 ng/mL of serum with a high specificity for chloramphenicol. Cross-reactivity with florfenicol, thiamphenicol, penicillin, tetracyclines and sulfamethazine was not observed. The assay was able to detect chloramphenicol concentrations in normal sheep serum for at least 1 week after intramuscular injection with the drug at a dose of 25 mg/kg body weight (b.w.). The assay can be used as a screening tool for chloramphenicol use in animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Several physiological studies in recent years have convincingly demonstrated increased clearance of intravascular protein tracers by several different tissues, including the retina, during early diabetes and galactosemia in the rat. This change has been described as a consequence of increased permeation, although vascular leakage has not been demonstrated, and the fate of such tracers remains unelucidated. EXPERIMENTAL DESIGN: A pilot study in this laboratory showed no evidence of vascular leakage but suggested increased endocytosis of horseradish peroxidase (HRP) by retinal vascular endothelial cells (RVECs) in early diabetes. We therefore quantified RVEC endocytosis in normal, streptozotocin (STZ)-treated nondiabetic and STZ-diabetic rats using the design-based stereology method of "vertical sections." A duration of diabetes (6 weeks) was chosen to approximate the time period in which other workers have demonstrated increased protein permeation of the retina. RESULTS: After a 20-minute exposure to the tracer, HRP reaction product was observed in small vesicular and tubular endosomes and larger multivesicular bodies of the RVECs. Stereological analysis revealed a 6.5-fold increase in the volume of HRP-containing organelles in the RVECs of diabetic rats compared with STZ-treated nondiabetics or normal controls. None of the animals in this study showed HRP reaction product outside the retinal vascular endothelium. CONCLUSIONS: A highly significant increase in RVEC endocytosis occurs in early diabetes. Increased RVEC endocytosis may contribute to the observed clearance of intravascular protein tracers by the retina during early diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We sought to determine if hyperglycaemia is responsible for increased retinal vascular endothelial-cell (RVEC) endocytosis in diabetes and to assess the role of nonenzymatic glycosylation in mediation of this novel endothelial-cell pathology. RVECs were propagated in media containing either 5 or 25 mmol/l glucose for up to 10 days after which they were exposed to the protein tracer horseradish peroxidase for 30 min. The level of RVEC endocytosis was quantified in intact cell monolayers by electron microscopic stereology, and in cell lysates by a simple spectrophotometric method. The effect of the nonenzymatic glycosylation inhibitors, aminoguanidine and D-lysine, on high-glucose medium induced changes in RVEC endocytosis was tested by inclusion of these agents in the culture medium. RVECs exposed to 25 mmol/l glucose showed a stepwise increase in endocytosis of horseradish peroxidase culminating in a two- to threefold increase after 10 days. Endocytosis returned to normal levels after a further 10 days in 5 mmol/l glucose medium. The increase in RVEC endocytosis was markedly reduced, but not completely normalised, by aminoguanidine and D-lysine. Exposure of cultured RVECs to 25 mmol/l glucose causes an increase in endocytosis of similar magnitude to that experienced by RVEC in early diabetes, and implicates hyperglycaemia in the latter situation. A significant component of the increase in RVEC endocytosis appears to be mediated by nonenzymatic glycosylation.